MAGLUMI T3 (CLIA)

130203003M

Shenzhen New Industries Biomedical Engineering Co., Ltd 4F,Wearnes Tech Bldg, Science & Industry Park,

Nanshan, Shenzhen, 518057 CHINA

Tel. + 86-755-86028224 Fax.+ 86-755-26654850 EC REP

Lotus Global Co., Ltd 15 Alexandra Road London NW8 0DP

UK

Tel. + 44-20-75868010 Fax.+ 44-20-79006187

FOR PROFESSIONAL USE ONLY

Store at 2...8 °C

COMPLETELY READ THE INSTRUCTIONS BEFORE PROCEEDING

SYMBOLS EXPLANATIONS

Authorized Representative in Europe

Manufacturer

Attention. See Instructions For Use

Contents of kit

In vitro diagnostic medical device (In vitro diagnostic use)

Lot number

Catalogue Code

Expiry date (Use by...)

Temperature limitation (store at 2...8 °C)

Number of tests

Keep away from sunlight

Keep upright

INTENDED USE

The kit has been designed for the quantitative determination of Triiodothyronine (T3) in human serum.

The method can be used for samples over the range of 0-10ng/ml. The test has to be performed on the MAGLUMI chemiluminescence immunoassay (CLIA) fully auto analyzer (Including MAGLUMI 1000, MAGLUMI 2000, MAGLUMI 2000 Plus and new developed models).

SUMMARY AND EXPLANATION OF THE TEST

In healthy subject, the thyroid secretes approx. 5-10µg triiodothyronine per day. Circulating 3,5,3' -triiodothyronine (T3) is, however, for the most part produced by peripheral deiodination so that the overall daily secretion rate of total T3 amounts to approx. 20µg. In serum, the thyroid hormones are bound to carrier proteins, and only their free fraction is physiologically active.

The clinical relevance of quantitative T3 determination in suspected thyroid disease lies mainly in the diagnosis and evaluation of hyperthyroidism. Particularly in isolated T3 hyperthyroidism, elevated T3 concentrations with concomitant normal TBG and T4 levels are observed. Following surgical resection of the thyroid gland and therapy with iodine-131, T3 concentrations may - in contrast to those of T4-remain at an elevated level or even rise (recurrence of hyperthyroidism).

Occasional elevations of triiodothyronine levels are also found in approx. 50% of patients with autonomous adenoma associated with hyperthyroidism. Such elevations may also occur in the early stages of hyperthyroidism, in endocrine ophthalmopathy associated with latent hyperthyroidism, during treatment of hyperthyroidism (thyrostatics), in iodine deficiency with and without goitre and in Hashimoto's thyroiditis, whereby the metabolic state may be normal.

PRINCIPLE OF THE TEST

Competitive immunoluminometric assay:

Use an anti-T3 monoclonal antibody to label ABEI, and use a purified T3 antigen to label FITC. Sample, Calibrator, or Control with ABEI Label, FITC Label and nano magnetic microbeads coated with sheep anti-FITC are mixed thoroughly and incubated at 37°C, forming complexes; after sediment in a magnetic field, decant the supernatant, then cycle washing for 1 time. Subsequently, the starter reagents are added and a flash chemiluminescent reaction is initiated. The light signal is measured by a photomultiplier as RLU within 3 seconds and is proportional to the concentration of T3 present in controls or samples.

KIT COMPONENTS

Material Supplies

material Supplies			
Reagent Integral for 100 determinations			
Nano magnetic microbeads: TRIS buffer,			
1.2%(W/V), 0.2%NaN3, coated with sheep anti-			
FITC polyclonal antibody.			
Calibrator Low: bovine serum, 0.2%NaN ₃ 2.5ml			
Calibrator High: bovine serum, 0.2%NaN ₃			
FITC Label: purified T3 antigen labeled FITC,	6.5ml		
containing BSA, 0.2%NaN ₃ .			
ABEI Label: anti-T3 monoclonal antibody	6.5ml		
labeled ABEI, containing BSA, 0.2% NaN ₃ .	0.51111		
All reagents are provided ready-to-use	·		

001120626-v1.0-EN 1/4

Reagent Vials in kit box		
Internal Quality Control: containing BSA,		
0.2%NaN ₃ . (target value refer to Quality	2.0ml	
Control Information date sheet)		

Accessories Required But Not Provided

MAGLUMI Reaction Module	REF: 630003
MAGLUMI Starter 1+2	REF: 130299004M
MAGLUMI Wash Concentrate	REF: 130299005M
MAGLUMI Light Check	REF: 130299006M

Preparation of the Reagent Integral

Before the sealing is removed, gentle and careful horizontal shaking of the Reagent Integral is essential (avoid foam formation!) Remove the sealing and turn the small wheel of the magnetic microbeads compartment to and fro, until the colour of the suspension has changed into brown. Place the Integral into the reagent area and let it stand there for 30 min. During this time, the magnetic microbeads are automatically agitated and completely resuspended.

Do not interchange integral component from different reagents or lots!

Storage and Stability

- Sealed: Stored at 2-8
- °C until the expiry date.
- Opened: Stable for 4 weeks. To ensure the best kit performance, it is recommended to place opened kits in the refrigerator if it's not going to be used on board during the next 12 hours.

Keep away from direct sunlight.

CALIBRATION AND TRACEABILITY

1)Traceability

To perform an accurate calibration, we have provided the test calibrators standardized against the USP Reference Material Liothyonine.

2) 2-Point Recalibration

Via the measurement of calibrators, the predefined master curve is adjusted (recalibrated) to a new, instrument-specific measurement level with each calibration.

3) Frequency of Recalibration

- After each exchange of lot (Reagent Integral or Starter Reagents).
- Every week and/or each time a new Integral is used (recommendation).
- · After each servicing of the MAGLUMI Fully Auto analyzer.
- If controls are beyond the expected range.

SPECIMEN COLLECTION AND PREPARATION

Sample material: serum

Collect samples using standard procedures.

Store at 2-8

below - 20 °C

Avoid repeated freezing and thawing cycles, stored samples should be thoroughly mixed prior to use (Vortex mixer).

Please ask local representative of SNIBE for more details if you have any doubt.

Vacuum Tubes

(a) Blank tubes are recommended type for collecting samples. 001120626-v1.0-EN

(b) Please ask SNIBE for advice if special additive must be used in sample collecting.

Specimen Conditions

- Do not use specimens with the following conditions:
 - (a) heat-inactivated specimens;
 - (b) Cadaver specimens or body fluids other than human serum; (c) Obvious microbial contamination.
- Use caution when handling patient specimens to prevent cross contamination. Use of disposable pipettes or pipette tips is recommended.
- Inspect all samples for bubbles. Remove bubbles with an applicator stick prior to analysis. Use a new applicator stick for each sample to prevent cross contamination.
- Serum specimens should be free of fibrin, red blood cells or other particulate matter.
- Ensure that complete clot formation in serum specimens has taken place prior to centrifugation. Some specimens, especially those from patients receiving anticoagulant or thrombolytic therapy, may exhibit increased clotting time. If the specimen is centrifuged before a complete clot forms, the presence of fibrin may cause erroneous results.

Preparation for Analysis

- Patient specimens with a cloudy or turbid appearance must be centrifuged prior to testing. Following centrifugation, avoid the lipid layer (if present) when pipetting the specimen into a sample cup or secondary tube.
- Specimens must be mixed thoroughly after thawing by low speed vortexing or by gently inverting, and centrifuged prior to use to remove red blood cells or particulate matter to ensure consistency in the results. Multiple freeze-thaw cycles of specimens should be avoided.
- All samples (patient specimens or controls) should be tested within 3 hours of being placed on board the MAGLUMI System. Refer to the SNIBE service for a more detailed discussion of onboard sample storage constraints.

Storage

- If testing will be delayed for more than 8 hours, remove serum or plasma from the serum or plasma separator, red blood cells or clot. Specimens removed from the separator gel, cells or clot may be stored up to 24 hours at 2-8°C.
- Specimens can be stored up to 30 days frozen at -20°C or colder.

Shipping

• Before shipping specimens, it is recommended that specimens be removed from the serum or plasma separator, red blood cells or clot. When shipped, specimens must be packaged and labeled in compliance with applicable state, federal and international regulations covering the transport of clinical specimens and infectious substances. Specimens must be shipped frozen (dry ice). Do not exceed the storage time limitations identified in this section of the package insert.

WARNING AND PRECAUTIONS FOR USERS

- For use in *IN-VITRO* diagnostic procedures only.
- °C: 24 hour a seagen is setto in structions in this package insert.

Safety Precautions

CAUTION: This product requires the handling of human specimens.

 The calibrators in this kit are prepared from bovine serum products. However, because no test method can offer complete assurance that HIV, Hepatitis B Virus or other infectious agents are absent; these reagents should be considered a potential biohazard and handled with the same precautions as applied to any serum or plasma specimen.

- All samples, biological reagents and materials used in the assay must be considered potentially able to transmit infectious agents. They should therefore be disposed of in accordance with the prevailing regulations and guidelines of the agencies holding jurisdiction over the laboratory, and the regulations of each country. Disposable materials must be incinerated; liquid waste must be decontaminated with sodium hypochlorite at a final concentration of 5% for at least half an hour. Any materials to be reused must be autoclaved using an overkill approach (USP 24, 2000, p.2143). A minimum of one hour at 121 considered adequate, though the users must check the effectiveness of their decontamination cycle by initially validating it and routinely using biological indicators.
- It is recommended that all human sourced materials be considered potentially infectious and handled in accordance with the OSHA Standard on Bloodborne Pathogens 13.
 Biosafety Level 214 or other appropriate biosafety practices should be used for materials that contain or are suspected of containing infectious agents.
- This product contains Sodium Azide; this material and its container must be disposed of in a safe way.
- · Safety data sheets are available on request.

Handling Precautions

- Do not use reagent kits beyond the expiration date.
- Do not mix reagents from different reagent kits.
- Prior to loading the Reagent Kit on the system for the first time, the microbeads requires mixing to re-suspend microbeads that have settled during shipment.
- For microbeads mixing instructions, refer to the KIT COMPONENTS, Preparation of the Reagent Integral section of this package insert.
- To avoid contamination, wear clean gloves when operating with a reagent kit and sample.
- Over time, residual liquids may dry on the kit surface, please pay attention the silicon film still exists on the surface of the kit.
- For a detailed discussion of handling precautions during system operation, refer to the SNIBE service information.

TEST PROCEDURE

To ensure proper test performance, strictly adhere to the operating instructions of the MAGLUMI Fully Auto analyzer. Each test parameter is identified via a RFID tag on the Reagent Integral. For further information please refer to the MAGLUMI Chemiluminescence Analyzer Operating Instructions.

40µl	Sample, calibrator or controls
+40µl	ABEI label
+40µl	FITC label
+20µl	Nano magnetic microbeads
15 min	Incubation
400µl	Cycle washing
3 s	Measurement

DILUTION

Sample dilution by analyzer is not available in this reagent kit. Samples with concentrations above the measuring range can be diluted manually. After manual dilution, multiply the result by the dilution factor.

Please choose applicable diluents or ask SNIBE for advice before manual dilution must be processed.

QUALITY CONTROL

- Observe quality control guidelines for medical laboratories
- Use suitable controls for in-house quality control. Controls

should be run at least once every 24 hours when the test is in use, once per reagent kit and after every calibration. The control intervals should be adapted to each laboratory's individual requirements. Values obtained should fall within the defined ranges. Each laboratory should establish guidelines for corrective measures to be taken if values fall outside the range.

LIMITATIONS OF THE PROCEDURE

Normal T3 concentrations do not necessarily reflect a normal-thyroid state. Certain thyroid disorders (such as latent hypo- or hyperthyroidism, compensatory T3 over secretion in iodine deficiency, TBG oversecretion) may also be associated with euthyroid T3 levels.

oc is Fulfillermore, the clinical evaluation of serum findings must take into consideration both age- or pregnancy-related differences as well as a potential influence of wxogenously administered thyroid hormones, contraceptives, steroids, salicylates, diphenylhydantoin or other drugs as well as changes of the binding capacities of serum proteins for thyroid hormones.

Serum T3 levels alone give no evidence of the presence or absence of thyroid disease. They must always be interpreted in context with the clinical picture and other diagnostic procedures.

2) Interfering Substances

No interference with test results is seen by concentrations of bilirubin < 0.125 mg/ml, haemoglobin < 16 mg/dl or triglycerides < 12.5 mg/ml.

3) HAMA

Patient samples containing human anti-mouse antibodies (HAMA) may give falsely elevated or decreased values. Although HAMA-neutralizing agents are added, extremely high HAMA serum concentrations may occasionally influence results.

RESULTS

1) Calculation of Results

- The analyzer automatically calculates the T3 concentration in each sample by means of a calibration curve which is generated by a 2-point calibration master curve procedure.
 The results are expressed in ng/ml. For further information please refer to the MAGLUMI Chemiluminescence Analyzer Operating Instructions.
- Conversion factor: 1 ng/ml = 1.54 nmol/L

2) Interpretation of Results

- Results of study in clinical centers with group of individuals, 95% of the results were: 0.69-2.15ng/ml
- Results may differ between laboratories due to variations in population and test method. If necessary, each laboratory should establish its own reference range.

PERFORMANCE CHARACTERISTICS

1) Precision

Intra-assay coefficient of variation was evaluated on 3 different levels of control serum repeatedly measured 20 times in the same run, calculating the coefficient of variation.

Intra-assay precision			
Control	Mean(ng/ml)	SD(ng/ml)	CV%
Level 1	1.08	0.06	5.41%
Level 2	2.25	0.12	5.12%
Level 3	4.55	0.22	4.73%

Inter-assay coefficient of variation was evaluated on three batches of kits. Repeatedly measured 3 different levels of control serum 21 times, calculating the coefficient of variation.

Inter-assay precision				-
Control	Mean(ng/ml)	SD(ng/ml)	CV%	
Level 1	1.12	0.10	9.34%	
Level 2	2.35	0.21	8.73%	

001120626-v1.0-EN 3/4

Level 3	4.08	0.37	9.14%

2) Analytical Sensitivity

The sensitivity is defined as the concentration of T3 equivalent to the mean RLU of 20 replicates of the zero standard plus two standard deviations corresponding to the concentration from the standard curve. The sensitivity is typically less than 0.06 ng/ml.

3) Specificity

The specificity of the T3 assay system was assessed by measuring the apparent response of the assay to various potentially cross reactive analytes.

Compound	Concentration	Cross reactivity
T4	300 ng/ml	0.2%
rT3	100 ng/ml	0.1%

4) Recovery

Consider calibrator high of known concentration as a sample, dilute it by 1:2 ratio with diluents and measure its diluted concentration for 10 times. Then calculate the recovery of measured concentration and expected concentration. The recovery should be within 90% -110%.

Expected	Mean Measuring	Recovery
6.634 ng/ml	7.039 ng/ml	106%

5) Linearity

Use T3 calibrator to prepare the six-point standard curve, measuring all points' RLU except point A, and then do four-parameter linear fitting in double logarithm coordinate, the absolute linear correlation coefficient(r) should be bigger than 0.9800.

Calibrator	Concentration	Absolute linear
Point	ng/ml	correlation coefficient (r)
Α	0	
В	0.25	r=0.9859
С	1.0	
D	2.5	
E	5.0	
F	10.0	

6) Method comparison

A comparison of MAGLUMI T3(y) with a commercially available T3(x) using clinical samples gave the following correlations (ng/ml):

Linear regression

y=0.95x+2.3

r=0.962

Sy.x=85.2

Number of samples measured:200

The sample concentrations were between 0.18-9.10ng/ml

References

- Pagana, K. D. & Pagana, T. J. (© 2011). Mosby's Diagnostic and Laboratory Test Reference 10th Edition: Mosby, Inc., Saint Louis, MO. Pp 976-977.
- Eckman, A. (Updated 2010 April 20). T3 Test. MedlinePlus Medical Encyclopedia [On-line information]. Available online at http://www.nlm.nih.gov/medlineplus/ency/article/003687.htm. Accessed February 2011.
- 3.Kansagra, S. et. al. (2010 June 10). The Challenges and Complexities of Thyroid Hormone Replacement. Medscape Today from Laboratory Medicine. 2010;41(6):229-348 [On-line information]. Available online at http://www.medscape.com/viewarticle/722086 through http://www.medscape.com. Accessed February 2011.
- 4. Davies AG, et al. Urinary albumin excretion in school children.

- Arch Dis Child 1984: 59:625-30.
- 5. Dahlquist G, et al. Effect of metabolic control and duration on exercise-induced albuminuria in diabetic teenagers. Acta Pediatr Scand 1983; 72:895-902.
- 6.Hostetter TH. Diabetic nephropathy. New Engl J Med 1985:312:642-4.
- 7. Kroc Collaborative Study Group. Blood glucose control and the evolution of diabetic netinopathy and albuminuria. A preliminary multicenter trial. New Engl J Med 1984; 311:365-72.
- Tietz Textbook of Clinical Chemistry and Molecular Diagnostics.
 Burtis CA, Ashwood ER, Bruns DE, eds. St. Louis: Elsevier Saunders; 2006, Pp. 2053, 2063-2064.
- Kasper DL, Braunwald E, Fauci AS, Hauser SL, Longo DL, Jameson JL eds (2005). Harrison's Principles of Internal Medicine, 16th Edition, McGraw Hill, Pg 2119.

001120626-v1.0-EN 4/4