AFP (Alpha Fetoprotein)
Cat # 5101Z

Enzyme Immunoassay for the Quantitative Determination of Alpha-Fetoprotein (AFP) in Human Serum

Intended use
AFP Enzyme Immunoassay test kit is intended for the quantitative determination of AFP concentration in human serum.

Introduction
Alpha-fetoprotein (AFP) is a glycoprotein with a molecular weigh of approximately 70,000 daltons. AFP is normally produced during fetal and neonatal development by the liver, yolksac, and in small concentrations by the gastrointestinal tract. After birth, serum AFP concentrations decrease rapidly, and by the second year of life and thereafter only trace amounts are normally detected in serum.

Elevation of serum AFP to abnormally high values occurs in several malignant diseases, most notably nonseminomatous testicular cancer and primary hepatocellular carcinoma. In the case of nonseminomatous testicular cancer, a direct relationship has been observed between the incidence of elevated AFP levels and the stage of disease. Elevated AFP levels have also been observed in patients diagnosed with seminoma with nonseminomatous elements, but not in patients with pure seminoma.

In addition, elevated serum AFP concentrations have been measured in patients with other noncancerous diseases, including ataxia telangiectasia, hereditary tyrosinemia, neonatal hyperbilirubinemia, acute viral hepatitis, chronic active hepatitis, and cirrhosis. Elevated serum AFP concentrations are also observed in pregnant women. Therefore, AFP measurements are not recommended for use as a screening procedure to detect the presence of cancer in the general population.

Principle of the test
The AFP Quantitative Test Kit is based on a solid phase enzyme-linked immunosorbent assay. The assay system utilizes one anti-AFP antibody for solid phase (microtiter wells) immobilization and another mouse monoclonal anti-AFP antibody in the antibody-enzyme (horseradish peroxidase) conjugate solution. The test specimen (serum) is added to the AFP antibody coated microtiter wells and incubated with the Zero Buffer. If human AFP is present in the specimen, it will combine with the antibody on the well. The well is then washed to remove any residual test specimen, and AFP antibody labeled with horseradish peroxidase (conjugate) are added. The conjugate will bind immunologically to the AFP on the well, resulting in the AFP molecules being sandwiched between the solid phase and enzyme-linked antibodies. After a incubation at room temperature, the wells are washed with water to remove unbound labeled antibodies. A solution of TMB is added and incubated for 20 minutes, resulting in the development of a blue color. The color development is stopped with the addition of 2N HCl, and the color is changed to yellow and measured spectrophotometrically at 450 nm. The concentration of AFP is directly proportional to the color intensity of the test sample.

Materials and components

Materials provided with the test kits:
- Antibody-coated microtiter plate with 96 wells.
- Zero buffer, 12 ml.
- Reference standard set, contains 0, 5, 20, 50, 150, and 300 ng/ml (WHO, 72/225) AFP, Ready for use.
- Enzyme Conjugate Reagent, 18 ml.
- TMB Substrate, 12 ml.
- Stop Solution, 12 ml.
- Wash Buffer Concentrate(50X), 15ml

Materials required but not provided:
- Precision pipettes: 0.0ml, 0.04–0.2ml.
- Disposable pipette tips.
- Distilled water.
- Vortex mixer or equivalent.
- Absorbent paper or paper towel.
- Graph paper.
- Microtiter plate reader.

Specimen collection and preparation
Serum should be prepared from a whole blood specimen obtained by acceptable medical techniques. This kit is for use with serum samples without additives only.
Storage of test kits and instrumentation
Unopened test kits should be stored at 2-8°C upon receipt and the microtiter plate should be kept in a sealed bag with desiccants to minimize exposure to damp air. Opened test kits will remain stable until the expiring date shown, provided it is stored as prescribed above. A microtiter plate reader with a bandwidth of 10nm or less and an optical density range of 0-2 OD or greater at 450nm wavelength is acceptable for use in absorbance measurement.

Reagent preparation
- All reagent should be brought to room temperature (18-22°C) before use.
- Dilute 1 volume of Wash Buffer (50x) with 49 volumes of distilled water. For example, Dilute 15 ml of Wash Buffer (50x) into distilled water to prepare 750ml of washing buffer(1x). Mix well before use.

Assay procedures
1. Secure the desired number of coated wells in the holder.
2. Dispense 20µl of standard, specimens, and controls into appropriate wells.
3. Dispense 100 µl of zero buffer into each well.
4. Thoroughly mix for 10 seconds. It is very important to have complete mixing in this setup.
5. Incubate at room temperature (18-22 °C) for 30 minutes.
6. Remove the incubation mixture by flicking plate content into a waste container.
7. Rinse and flick the microtiter wells 5 times with washing buffer(1x).
8. Strike the wells sharply onto absorbent paper or paper towels to remove all residual water droplets.
9. Dispense 150µl of Enzyme Conjugate Reagent into each well. Gently mix for 5 seconds.
10. Incubate at room temperature for 30 minutes.
11. Remove the incubation mixture by flicking plate contents into a waste container.
12. Rinse and flick the microtiter wells 5 times with washing buffer(1X).
13. Strike the wells sharply onto absorbent paper to remove residual water droplets.
14. Dispense 100µl TMB solution into each well. Gentle mix for 5 seconds.
15. Incubate at room temperature for 20 minutes.
16. Stop the reaction by adding 100µl of stop solution to each well.
17. Gently mix for 30 seconds to make sure that the blue color changes to yellow color completely.
18. Read optical density at 450nm with a microtiter reader within 15 minutes.

Important Note:
The wash procedure is critical. Insufficient washing will result in poor precision and falsely elevated absorbance readings.

Calculation of results
Calculate the mean absorbance value (A450) for each set of reference standards, specimens, controls and patient samples. Constructed a standard curve by plotting the mean absorbance obtained from each reference standard against its concentration in ng/ml on graph paper, with absorbance values on the vertical or Y-axis and concentrations on the horizontal or X-axis. Use the mean absorbance values for each specimen to determine the corresponding concentration of AFP in ng/ml from the standard curve.

Example of standard curve
Results of typical standard run with optical density reading at 450nm shown in the Y-axis against AFP concentrations shown in the X-axis. This standard curve is for the purpose of illustration only, and should not be used to calculate unknowns. Each user should obtain his or her own data and standard curve.

<table>
<thead>
<tr>
<th>AFP (ng/ml)</th>
<th>Absorbance (450nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.012</td>
</tr>
<tr>
<td>5</td>
<td>0.127</td>
</tr>
<tr>
<td>20</td>
<td>0.455</td>
</tr>
<tr>
<td>50</td>
<td>0.952</td>
</tr>
<tr>
<td>150</td>
<td>2.150</td>
</tr>
<tr>
<td>300</td>
<td>2.932</td>
</tr>
</tbody>
</table>

Expected values and sensitivity
In high-risk patients, AFP values between 100 and 350 ng/ml suggest a diagnosis of hepatocellular carcinoma, and levels over 350 ng/ml usually indicate the disease. Approximately 97% of the healthy subjects have AFP levels less than 8.5 ng/ml. It is recommended that each laboratory establish its own normal range. The minimum detectable concentration of AFP by this assay is estimated to be 2.0 ng/ml.
Literatures