



# Lipase, Enzymatic, colorimetric

(en) English

| REF      | Cont | ent |      |     |     |     |      |       |
|----------|------|-----|------|-----|-----|-----|------|-------|
| D01441   | 4 x  | 50  | mL   | R1  | +   | 1 x | 50   | mL R2 |
| D01440   | 4 x  | 25  | mL R | 1 + | 1>  | (   | 25   | mL R2 |
| D01443   | 4 x  | 10  | mL R | 1 + | 1>  | (   | 10   | mL R2 |
| D44911   | 4 x  | 50  | mL R | 1 + | 2 > | (   | 25   | mL R2 |
| D0433917 | 4 x  | 50  | mL R | 1 + | 1>  | (   | 50   | mL R2 |
| DA0837   | 4 x  | 20  | mL R | 1 + | 1>  | (   | 20   | mL R2 |
| DT1037   | 4 x  | 20  | mL R | 1 + | 1>  | (   | 20   | mL R2 |
| DK0735   | 4 x  | 50  | mL R | 1 + | 1>  | (   | 50   | mL R2 |
| DE1837   | 2 x  | 50  | mL R | 1 + | 2)  | (   | 12.5 | mL R2 |
| DB20327  | 4 x  | 50  | mL R | 1 + | 1>  | (   | 12.5 | mL R2 |

For professional in vitro diagnostic use only.

#### INTENDED USE

Diagnostic reagent for quantitative in vitro determination of lipase in human serum or plasma on photometric systems

#### DIAGNOSTIC SIGNIFICANCE<sup>1,2</sup>

Lipases are enzymes which hydrolyze glycerol esters of long fatty acids. The enzyme and its cofactor colipase are produced in the pancreas. In small amounts, lipase is also secreted by the salivary glands as well as by gastric, pulmonary and intestinal mucosa. Bile acids and colipase form micellar complexes with the lipids and bind lipase on the substrate/water interface.

Determination of lipase is used for investigation of pancreatic disorders. In acute pancreatitis the lipase concentrations rise to 2-50 fold the upper reference limit within 4-8 hours after the beginning of abdominal pain peaking at 24 hours and decrease within 8 to 14 days. Elevated lipase values can also be observed in chronic pancreatitis and obstruction of the pancreatic duct.

#### **TEST PRINCIPLE**

The colour substrate 1,2-o-dilauryl-rac-glycero-3-glutaric acid-(-6-methylresorufin) ester is cleaved by pancreatic lipase in the presence of colipase and bile acids, and the resulting dicarboxilic acid ester is hydrolysed under alkaline test conditions to yield the chromophore methylresorufin.

The kinetic of colour formation at 580 nm is monitored and it is proportional to lipase activity in the sample

1,2-o-Dilauryl-rac-glycero-3-glutaric acid (6-methylresorufin) ester  $\stackrel{\text{Lipase/Collpase}}{\longleftrightarrow}$  1,2-o-Dilauryl-rac-glycerol + Glutaric acid-(6-methylresorufin)-ester

Glutaric acid-(6-methylresorufin)-ester 

spontaneous degradation 
Glutaric acid + Methylresorufin

## REAGENT COMPOSITION

| COMPONENTS<br>Reagent 1 |        | CONCENT | <b>TRATION</b> |  |
|-------------------------|--------|---------|----------------|--|
| Good's Buffer           | pH 8.0 |         |                |  |
| Colipase                |        | ≥ 1     | mg/L           |  |
| Desoxycholate           |        | ≥ 1.0   | mmol/L         |  |
| Taurodesoxycholate      |        | ≥ 1.0   | mmol/L         |  |
| Calcium ions            |        | ≥ 1.0   | mmol/L         |  |
| Detergent               |        |         |                |  |
| Preservative            |        |         |                |  |
| Reagent 2               |        |         |                |  |
| Tartrate Buffer         | pH 4.0 |         |                |  |
| Lipase Substrate        |        | ≥ 0.1   | mmol/L         |  |
| Stabilizer              |        |         |                |  |
| Preservative            |        |         |                |  |

# MATERIAL REQUIRED BUT NOT PROVIDED

Standard or Calibrator eg:

| REF      | Name        | Con | tent |      |
|----------|-------------|-----|------|------|
| D98485   | Diacal Auto | 5   | Х    | 3 mL |
| D98485SV | Diacal Auto | 1   | Х    | 3 mL |

Controls, ea:

| REF      | Name     | Content |      | Description      |
|----------|----------|---------|------|------------------|
| D98481   | Diacon N | 12 x    | 5 mL | Control normal   |
| D14481   | Diacon N | 5 x     | 5 mL | Control normal   |
| D98481SV | Diacon N | 1 x     | 5 mL | Control normal   |
| D98482   | Diacon P | 12 x    | 5 mL | Control abnormal |
| D14482   | Diacon P | 5 x     | 5 mL | Control abnormal |
| D98482SV | Diacon P | 1 x     | 5 ml | Control abnormal |

- NaCl solution (9 g/L).
- Photometric device
- General laboratory equipment.

#### REAGENT PREPARATION

Reagents are ready to use Avoid strong shaking!

#### STORAGE AND STABILITY

Conditions Store at 2 - 8 °C. Protect from light. Close immediately after use. Avoid contamination. Do not freeze the

Stability 60 days after first opening of the primary container

Reagent R2 is a microemulsion. Therefore, a slight apparent precipitation could occur, showing a light red deposit on the bottom of vial. This is normal. It is recommended to resuspend solution before analysis, with a mild shaking.

#### WARNINGS AND PRECAUTIONS

Reagent 2: Danger.



H318: Causes serious eye damage.

P280: Wear protective gloves/protective clothing/eye protection. P305+P351+P338: IF IN EYES: Rinse cautiously with water for several

minutes. Remove contact lenses, if present and easy to do. Continue rinsing. P310: Immediately call a doctor.

- Reagent 1 contains sodium azide (0.95 g/L) as preservative. Do not swallow! Avoid contact with skin and mucous membranes
- Many other clinical reagents contain lipase or high concentrations of detergents. 3. Avoid contamination and carry over!
- Special care should be taken in combination with triglycerides, HDL and LDL reagents containing microbial lipases that could stick on the surface of instrument cuvettes. Cuvettes and other glassware must be cleaned thoroughly after being used for other assays. In case of automated measurement refer to the instrument
- manual for special washing programs before lipase determination. Please refer to the safety data sheets and take the necessary precautions for the
- use of laboratory reagents.

  For diagnostic purposes, the results should always be assessed with the patient's medical history, clinical examinations and other findings.
- In the event of an incident related to the device, report it to the manufacturer and your competent authority as required.
- For professional use only!

#### SPECIMEN COLLECTION AND STORAGE

Serum, heparinized plasma.

Stability9:

at 2 - 8 °C

In serum/plasma 7 days Discard contaminated specimens.

### **TEST PROCEDURE**

Enzymatic colorimetric, kinetic, increasing reaction

580 nm Optical path: 37 °C

Bring reagents and samples to room temperature.

| Pipette into test tubes                                            | Blank   | Calibrator | Sample  |  |
|--------------------------------------------------------------------|---------|------------|---------|--|
| Reagent 1                                                          | 1000 μL | 1000 µL    | 1000 µL |  |
| Sample                                                             | -       |            | 20 µL   |  |
| Calibrator                                                         | -       | 20 µL      | -       |  |
| Dist. water                                                        | 20 µL   | -          | -       |  |
| Mix carefully (do not shake!), incubate 5 min. at 37 °C. Then add: |         |            |         |  |
| Reagent 2                                                          | 250 μL  | 250 µL     | 250 µL  |  |

Mix. Incubate 2 min. at 37°C, read absorbance against Reagent blank and start stop watch

Read absorbance again after exactly 1 and 2 minutes.

Calculate:

 $\Delta A/min = [\Delta A/min sample or calibrator] - [\Delta A/min blank]$ 

#### Automation

Special adaptations for automated analysers can be made on request.

# INTERPRETATION OF RESULTS

Calculation Serum/Plasma:

> ∆A/min Sample Lipase [U/L] = - x Conc. Calibrator [U/L] ΔA/min Calibrator

#### Unit Conversion

Lipase [U/L] x 0.01667 = Lipase [µkat/L]

### QUALITY CONTROL AND CALIBRATION

It is suggested to perform an internal quality control. We recommend the DIALAB serum controls  ${f Diacon\ N}$  (control serum with values in the normal range) and  ${f Diacon\ P}$ (control serum with values in the abnormal range).

Each laboratory should establish corrective action in case of deviations in control recovery

#### Calibration

The assay requires the use of a Lipase Standard or Calibrator. We recommend the DIALAB multi calibration serum Diacal Auto.



# DIALAB Produktion und Vertrieb von chemisch-technischen Produkten und Laborinstrumenten Gesellschaft m.b.H. IZ NOE-Sued, Hondastrasse, Objekt M55, 2351 Wr. Neudorf, Austria Phone: +43 (0) 2236 660910-0, Fax: +43 (0) 2236 660910-30, e-mail: office@dialab.at

#### PERFORMANCE CHARACTERISTICS

Tests were performed on the instrument Ilab650.

Exemplary data mentioned below may slightly differ in case of deviating measurement

#### Precision

| Within run (n=10)             | Sample 1             | Sample 2              |
|-------------------------------|----------------------|-----------------------|
| Mean [U/L]                    | 49.9                 | 110.5                 |
| CV [%]                        | 1.30                 | 1.53                  |
|                               |                      |                       |
| Between day (n=20)            | Sample 1             | Sample 2              |
| Between day (n=20) Mean [U/L] | <b>Sample 1</b> 50.0 | <b>Sample 2</b> 110.9 |

#### **Analytical Sensitivity**

Limit of detection: 1 U/L

#### Linearity and measuring range

The assay has been developed to determine lipase within a measuring range from 1 -300 U/L. If this value is exceeded, samples should be diluted 1 + 1 with NaCl solution (9 g/L) and the result multiplied by 2.

#### Analytical specificity

| Interfering substance   | No interference up to: |  |  |
|-------------------------|------------------------|--|--|
| Ascorbic acid           | 50 mg/dL               |  |  |
| Bilirubin               | 50 mg/dL               |  |  |
| Hemoglobin              | 400 mg/dL              |  |  |
| Lipemia (Triglycerides) | 1000 mg/dL             |  |  |

For further information on interfering substances refer to Young DS<sup>10</sup>.

#### Clinical performance

| Method comparison (n=76) |                                        |  |
|--------------------------|----------------------------------------|--|
|                          | DIALAB Lipase, Enzymatic, colorimetric |  |
| Test x                   | Previous formulation                   |  |
|                          | DIALAB Lipase, Enzymatic, colorimetric |  |
| Test y                   | Current formulation                    |  |
| Slope                    | 1.017                                  |  |
| Intercept                | -1.452 U/L                             |  |
| r <sup>2</sup>           | 0.990                                  |  |

The assigned values of Lipase in the calibrator Diacal Auto have been made traceable to the molar extinction coefficient  $\epsilon$  according to an available measurement procedure.

#### **EXPECTED VALUES**

| Normal subjects <sup>8</sup> | ≤ 60 U/L (≤ 1.00 µkat/L) |
|------------------------------|--------------------------|

Each laboratory should check if the reference ranges are transferable to its own patient population and determine own reference ranges if necessary.

#### LIMITATIONS

Eventual Lipase (Enzymatic, colorimetric) carry-over to reagents Calcium (Arsenazo), Calcium (CPC), Magnesium (Xylidyl blue) and Triglycerides (GPO-PAP). The actual carry-over depends on the analyser.

#### **WASTE MANAGEMENT**

Please refer to local legal requirements.

## **LITERATURE**

- Lorentz K. Lipase. In: Thomas L, editor. Clinical laboratory diagnostics. 1st ed. Frankfurt: TH-Books Verlagsgesellschaft; 1998. p. 95-7. Moss DW, Henderson AR. Digestive enzymes of pancreatic origin. In: Burtis CA, 1.
- Ashwood ER, editors. Tietz Textbook of Clinical Chemistry. 3<sup>rd</sup> ed. Philadelphia: W.B Saunders Company; 1999. p. 689-708.

  Tietz N, Shuey DF. Lipase in serum the elusive enzyme: an overview. Clin Chem 1993;39:746-56.

  Lott J, Patel ST, Sawhney AK, Kazmierczak SC, Love JE. Assays of serum
- 3.
- 4. lipase: analytical and clinical considerations. Clin Chem 1986;32:1290-1302.
- Leybold A, Junge W. Importance of colipase for the measurement of serum lipase activity. Adv Clin Enzymol 1986;4:60-7. 5.
- 6. Borgström B. The action of bile salts and other detergents on pancreatic lipase and the interaction with colipase. Biochimica et Biophysika Acta 1977;488:381-
- 7. Gargouri Y, Julien R, Bois A, Verger R, Sarda L. Studies on the detergent
- inhibition of pancreatic lipase activity. J of Lipid Research 1983;24:1336-42. Junge W, Abicht K, Goldman J. Evaluation of the colorimetric liquid assay for 8. pancreatic lopase on Hitachi analyzers in 7 clinical centres in Europe. Clin Chem
- 9.
- Rifai N., Horvath A.R., Wittwer C.T. Tietz Textbook of Clinical Chemistry and Molecular Diagnostics sixth edition ed. 2017 p. 421-424.

  Young DS. Effects of Drugs on Clinical Laboratory Tests. 5<sup>th</sup> ed. Volume 1 and 2. Washington, DC: The American Association for Clinical Chemistry Press 2000. 10.





