

Liquid Reagents - ready to use

ETHANOL

Enzymatic, UV 2 Reagents

Diagnostic reagent for quantitative in vitro determination of ethanol in human serum or plasma on photometric

REF	Kit Size	Content
D07810B	1 x 1 L	1 x 0,8 L R1 + 1 x 0,2 L R2
D07830	5 x 50 mL	4 x 50 mL R1 +1 x 50 mL R2
D07840	5 x 25 mL	4 x 25 mLR1 + 1 x 25 mL R2
D07850	5 x 10 mL	4 x 10 mL R1 + 1 x 10 mL R2
D67911	5 x 50 mL	4 x 50 mL R1 + 2 x 25 mL R2
D0447917	5 x 50 mL	4 x 50 mL R1 + 1 x 50 mL R2
DA0824	5 x 20 mL	4 x 20 mL R1 + 1 x 20 mL R2
DT1024	5 x 20 mL	4 x 20 mL R1 + 1 x 20 mL R2
DK0723	5 x 50 mL	4 x 50 mL R1 + 1 x 50 mL R2
DB0923	2 x 100 mL	2 x 80 mL R1 + 2 x 20 mL R2

Additionally offered:

Z05880 4 x 1 mL Ethanol Calibrator/Control Set

TEST PARAMETERS

Enzymatic, UV, Increasing Reaction Method:

Wavelength: 376 nm (360 - 380 nm)

Temperature:

Sample: Serum or plasma (heparin, EDTA)

Linearity: up to 350 mg/dL (3.5 g/L)

Sensitivity: The lower limit of detection is 10 mg/dL

(0.1 g/L)

SUMMARY

The determination of ethanol belongs to the most frequent analyses in the forensic and toxicological laboratory. It serves for the diagnosis of intoxications and poisonings particularly for emergency room patients.

TEST PRINCIPLE

Ethanol + NAD⁺ < ADH - Acetaldehyde + NADH + H⁺

In the presence of NAD Ethanol is converted by the Alcohol dehydrogenase. The measured absorbance of the produced NADH is proportional to the ethanol concentration in the sample.

REAGENT COMPOSITION

COMPONENTS	CONCENTRATION	
Reagent 1		
Buffer, pH 9.0	300	mmol/L
Stabilizers and preservatives		
Reagent 2		
Buffer, pH 6.6	40	mmol/L
NAD	≥ 10	mmol/L
Alcohol dehydrogenase (ADH)	≥ 200	kU/L

REAGENT PREPARATION

Reagents are ready to use.

REAGENT STABILITY AND STORAGE

Conditions: Protect from light!

Close immediately after use Do not freeze the reagents! Avoid contamination

Storage: at 2 - 8°C

Stability: up to the expiration date

SAMPLE STABILITY AND STORAGE

Serum and plasma (heparin and EDTA) [3]

Stability: at 20 - 25 °C 2 weeks at 4 - 8 °C 6 months (in tightly closed at -20 °C Sample tubes) 6 months Due to alcohol evaporation, the sample container has to be filled as complete as possible, tightly closed, and should not stand open for longer than 5 minutes.

Don't use alcohol or volatile disinfectants during ethanol measurement!

Freeze only once! Discard contaminated specimens!

MATERIALS REQUIRED BUT NOT PROVIDED

NaCl solution (9 q/L)

General laboratory equipment

STANDARDS/CONTROLS

(not included in the kit – to be ordered separately) Concentration: 0, 50, 100, 300 mg/dL

Storage: 2-8 °C

Stability: up to the expiration date

Close immediately after use!

MANUAL TEST PROCEDURE

Bring reagents and samples to room temperature

Bring reagents and samples to room temperature.					
Pipette into	Blank	Standard	Sample		
test tubes					
Sample	-	-	10 µL		
Standard	-	10 μL	-		
Dist water	10 µL	-	-		
Reagent 1 1000 μL 1000 μL 1000 μL					
Mix and incubate 5 min at 37 °C.					
Read absorbance A1 against reagent blank, than add:					

Reagent 2	250 µL	250 μL	250 μL

Mix and incubate 5 min. at 37°C. Read absorbance A2 immediately.

 $\Delta A = (A2 - A1)$

The observance of exact measuring times and absolute equal treatment of all samples, standards and controls must be respected

CALCULATION

∆A Sample Ethanol [mg/dL] =-x Conc. Standard [mg/dL] ∆A Standard

UNIT CONVERSION

Ethanol [mg/dL] x 0.217 = Ethanol [mmol/L]

Ethanol [mg/dL] (plasma/serum) x 0.008 = Ethanol %

Ethanol $[g/L] \times 21.7 = Ethanol [mmol/L]$

Ethanol in [g/L] (plasma/serum) x 0.8 = Ethanol %

REFERENCE RANGE [2]

Ethanol is present in serum and blood only after ingestion

zarane le precent in ceram and bieca em y arter ingecaem			
30 - 120 mg/dL	Slowed reflexes, diminution of		
(0.3 – 1.2 g/L)	attention, judgment and control		
120 - 250 mg/dL	Reduced visual acuity and increased		
(1.2 – 2.5 g/L)	reaction time		
250 – 350 mg/dL	Muscular incoordination decreased		
(2.5 – 3.5 g/L)	response to stimuli		
> 350 mg/dL	Impairment of circulation and		
(> 3.5 a/L)	respiration, possible death		

PERFORMANCE CHARACTERISTICS

LINEARITY, MEASURING RANGE

The test has been developed to determine ethanol concentrations up to 350 mg/dL (3.5 g/L). When values exceed this range samples should be diluted 1+1 with NaCl solution (9 g/L) and the result multiplied by 2.

SENSITIVITY/LIMIT OF DETECTION

The lower limit of detection is 10 mg/dL (0.1 g/L)

PRECISION (at 37 °C)

11=0101011 (41101 0)			
Intra-assay	Mean	SD	CV
n = 20	[g/L]	[g/L]	[%]
Sample 1	0.51	0.01	1.67
Sample 2	0.98	0.02	1.95
Sample 3	1.99	0.01	0.66

DIALAB Produktion und Vertrieb von chemisch – technischen Produkten und Laborinstrumenten Gesellschaft m.b.H. A – 2351 Wiener Neudorf, Austria, IZ-NÖ Süd, Hondastrasse, Objekt M55 Phone: ++43 (0) 2236 660910-0, Fax: ++43 (0) 2236 660910-30, e-mail: office@dialab.at

Inter-assay	Mean	SD	CV
n = 20	[g/L]	[g/L]	[%]
Sample 1	0.51	0.02	3.36
Sample 2	1.01	0.02	2.03
Sample 3	1.99	0.03	1.66

SPECIFICITY/INTERFERENCES

no interference up to:

Ascorbic acid 30 mg/dL Bilirubin 60 mg/dL Creatinine 250 mg/dL 2000 mg/dL Glucose Hemoglobin 1000 mg/dL I DH 2000 U/I Triglycerides 2000 mg/dL Urea 2000 mg/dL

For further information on interfering substances refer to Young DS [4].

METHOD COMPARISON

A comparison between Dialab Ethanol (y) and a commercially available test (x) using 30 samples gave following results: y = 1.00 x - 0.10 g/L; r= 0.999.

CALIBRATION

The assay requires the use of an ethanol standard. We recommend the Dialab **Ethanol Calibrator/Control Set.**..

QUALITY CONTROL

All controls with ethanol values determined by this method can be used

We recommend the Dialab **Ethanol Calibrator/Control Set**. Each laboratory should establish corrective action in case of deviations in control recovery.

AUTOMATION

Special adaptations for automated analyzers can be made on request.

WARNINGS AND PRECAUTIONS

Reagent 1: Warning.

H315: Causes skin irritation.

H319: Causes serious eye irritation.

P264: Wash hands and face thoroughly after handling.

P280: Wear protective gloves/protective clothing/eye protection/face protection.

P302+P352: If on skin: Wash with plenty of water/soap. P305+P351+P338: If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.

P332+P313: If skin irritation occurs: Get medical advice/attention.

P337+P313: If eye irritation persists: Get medical advice/attention.

- The reagents contain sodium azide (0.95 g/L) as preservative. Do not swallow! Avoid contact with skin and mucous membranes.
- Reagent 2 contains biological material. Handle the product as potentially infectious according to universal precautions and good laboratory practice.
- 4. In very rare cases, samples of patients with gammopathy might give falsified results [5].
- Please refer to the safety data sheets and take the necessary precautions for the use of laboratory reagents.
- For diagnostic purposes, the results should always be assessed with the patient's medical history, clinical examinations and other findings.
- 7. For professional use only!

WASTE MANAGEMENT

Please refer to local legal requirements.

REFERENCES

- Thomas L. Clinical Laboratory Diagnostics. 1st ed. Frankfurt: TH-Books Verlagsgesellschaft; 1998. p. 1168-1170.
- William H., Porter Ph.D. Clinical Toxicology. In: Burtis CA, Ashwood ER, editors. Tietz Textbook of Clinical Chemistry. 3rd ed. Philadelphia: W.B Saunders Company; 1999. p. 922-923.

- 3. Guder WG, Zawta B et al. The Quality of Diagnostic Samples. 1st ed. Darmstadt: GIT Verlag; 2001; p 28-9
- Young DS. Effects of Drugs on Clinical Laboratory Tests. 5th ed. Volume 1 and 2. Washington, DC: The American Association for Clinical Chemistry Press 2000.
- Bakker AJ, Mücke M. Gammopathy interference in clinical chemistry assays: mechanisms, detection and prevention. ClinChemLabMed 2007; 45(9): 1240-1243.

